
Software Architecture
Software Engineering

Alessio Gambi - Saarland University

These slides are based the slides from Cesare Pautasso and Christoph Dorn, and updated from
various sources.

References and Readings
• Textbooks
• R. N. Taylor, N. Medvidovic, E. M. Dashofy, Software Architecture: Foundations, Theory, and

Practice, Wiley, January 2009.

• G. Fairbanks, Just Enough Software Architecture: A Risk-Driven Approach, Marshall & Brainerd,

August 2010.

• Amy Brown and Greg Wilson (eds.) The Architecture of Open Source Applications, 2012.

• References
• Mary Shaw and David Garlan, Software Architecture: Pespectives on an Emerging Discipline,

Prentice-Hall, 1996

• Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal Pattern

Oriented Software Architecture: A System of Patterns, Wiley, 1996

• William Brown, Raphael Malveau, Hays McCormick, Thomas Mowbray, Anti Patterns:

Refactoring Software, Architectures, and Projects in Crisis, Wiley, 1992

• Clemens Szyperski, Component Software: Beyond Object-Oriented Programming, 2nd Edition,

Addison-Wesley, 2002

• Len Bass, Paul Clements, Rick Kazman, Ken Bass, Software Architecture in Practice, 2nd

Edition, Addison-Wesley, 2003

• Martin Fowler, Patterns of Enterprise Application Architecture, Addison Wesley, 2002

• Luke Hohmann, Beyond Software Architecture: Creating and Sustaining Winning Solutions,

Addison-Wesley, 2003

• Ian Gorton, Essential Software Architecture, Springer 2006

Intro and Motivation

Design in the Large
• Objects and methods

• Modules and components

• Large and complex systems

• Systems of systems

Design in the Large

• Size of the team

• Lifetime of the project

• Cost of development

• Objects and methods

• Modules and components

• Large and complex systems

• Systems of systems

Building software as we
build buildings ?

• Software is complex, so are
buildings (blueprint)

• Architecture implies a systematic
process for design and
implementation

• Architects put together pieces and
materials, they usually do not invent
new materials

It’s just an analogy !
• We know a lot about buildings (2000+ years), much

less about software

• Software systems do not obey to physical laws

• Software is a machine; a building is not

• Software deployment has no counterpart in building
architecture

Basic Concepts and
Definitions

Software Architecture

A software system’s architecture is the
set of principal design decisions made

about the system.

N. Taylor et al.

Abstraction

Manage complexity in the design

Communication

Document, remember and share design
decisions among the team

Visualization

Representation

Quality Analysis

Understand, predict, and control

When Sw. Architecture
Start ?

Since the
beginning of
design!

Never!

Architecture is NOT a phase of development

When Sw. Architecture
Stop ?

Every system has a Software Architecture

Descriptive vs Prescriptive

Every system has a Software Architecture

Descriptive vs Prescriptive

Architectural Evolution
Decisions are made over time

Decisions are changed over time
Decision are made by more than one person

The system architecture changes over time

Architectural Degradation

PD
Ideal P=D

Architectural Degradation

P D
Ideal P=D

Drift P !=D and D does not violate P

Architectural Degradation

P D
Ideal P=D

Drift P !=D and D does not violate P

Erosion P !=D and D violates P

Software Architecture
• Blueprint for construction and evolution

abstraction • principal design decisions

• Not only about design
communicate • visualize • represent • quality

• Every application has one, which evolves
descriptive • prescriptive • drift • erosion  

• Not a phase of development

The Software Architect
Is the one that takes strategic design decision

The Software Architect
Is the one that takes strategic design decision

Development Leader
Technology ExpertCommunicator
Risk Manager

Architects as …
• Software Development Experts

• Consultants

• Domain Experts

• Strategists

• Cost Estimators

Skills and experience:
The best architects are grown, not born

Design

How to Design
Even the best architects copy solutions that have
proven themselves in practice, adapt them to the

current context, improve upon their weaknesses, and
then assemble them in novel ways with incremental

improvements.

Architectural Hoisiting

George Fairbanks

Design the architecture with the intent to
guarantee a certain quality of the system.

• Security: place sensitive data behind the firewall

• Scalability: make critical components stateless

• Persistence: use a database

• Extensibility: design/reuse a plug-in framework

What makes a “good”
Architecture?

• No such things like perfect design and inherently
good/bad architecture

• Fit to some purpose, and context-dependent

• Principles, guidelines and the use of collective
experience (method)

Design principles - Arch. Patterns - Arch. Styles

Design Principles
• Abstraction

• Encapsulation - Separation of Concerns

• Modularization

• KISS (Keep it simple, stupid)

• DRY (Don’t repeat yourself)

Architectural Patterns

An architectural pattern is a set of architectural
design decisions that are applicable to a recurring
design problem, and parameterized to account for

different software development contexts in which that
problem appears.

Architectural Patterns

An architectural pattern is a set of architectural
design decisions that are applicable to a recurring
design problem, and parameterized to account for

different software development contexts in which that
problem appears.

Layered - Component - Events - Composition

Model-View-Controller
separate content (model) from presentation (output) and

interaction (input)

Layered

Dependency Injection
use a container which updates components with

bindings to their dependencies

Components

Half-Synch/Half-Asynch
Add a layer hiding asynchronous interactions behind a

synchronous interface

Events

Master/Slave
split a large job into smaller independent partitions

which can be processed in parallel

Composition

Architectural vs Design
Patterns

Express fundamental
structural organizations

Specify relationships
among (sub-)systems

Capture roles in solutions
that occur repeatedly

Define the relationships
among roles

Architectural Styles

Named collections of architectural decisions that
are applicable in a development context.

They constrain architectural design decisions,  
are specific to the system within that context, and
elicit beneficial qualities in each resulting system

Why Styles?

A common vocabulary for the design elements
improve communication by shared understanding

A predefined configuration and composition rules
known benefits and limitations
ensure quality attributes if constraints are followed

Style-specific analyses and visualizations

Monolithic Client/Server

Layered Plug-in

Styles vs Patterns

Usually there is one
dominant style

The same pattern can be
used many times

Many patterns are
usually combined

General constraints Fine-grained constraints

Architecture with 
superior properties

Specific to recurrent
problems

Styles must be refined
and adapted

Summary
• A great architecture likely combines aspects of

several other architectures

• Do no limit to just one pattern, but avoid the use of
unnecessary patterns

• Different styles lead to architectures with different
qualities, and so might do the same style

• Never not stop at the choice of patterns and  
styles: further refinement is needed

Modeling

Why modeling?

• Record decisions

• Communicate decisions

• Evaluate decisions

• Generate artifacts

What do we model ?
• The system-to-be (Design model)

- Static architecture
- Dynamic architecture

• Quality attributes and non-functional properties

• The problem (Domain model)

• The environment (System context and stakeholders)

• The design process

Design Model

Software Components
Software Connectors
Component assembly

System Context
Interfaces/API
Quality Attributes

Boundary Model Internal Model

Internal behaviorExternally visible behavior

Reusable unit of composition
Can be composed into larger systems

State in a system

Software Components

Application-specific — Infrastructure

Media Player
Math Library

Web Server
Database

Locus of computation

Composition and Distribution

Component Roles

Components

Modules

Objects

Encapsulate state and functionality
Coarse-grained
Black box architecture elements
Structure of architecture

Encapsulate state and functionality
Fine-grained
Can “move” across components
Identifiable unit of instantiation

Rarely exist at run time
May require other modules to compile
Package the code

Component Interfaces

Provided Interfaces
• Specify and document the externally visible

features (or public API) offered by the component  

- Data types and model
- Operations
- Properties
- Events and call-backs

Required Interface

• Specify the conditions upon which a component
can be reused
- The platform is compatible
- The environment is setup correctly

Compatible Interfaces
Component interfaces must match perfectly to be

connected

Adapter

Wrapper

Software Connectors

Model static and dynamic aspects of the  
 interaction between component interfaces

Connector Roles
• Communication

deliver data and transfer of control, support different communication
mechanisms, quality of the delivery

• Coordination
control the delivery of data, separate control from computation

• Conversion
enable interaction of mismatched components

• Facilitation
mediate the interaction among components, govern access to
shared information, provide synchronization

Connectors, not Components!

Connectors are not usually directly visible in the code,
which is not true for components

Connectors are mostly application-independent,
while components can be both application-

dependent or not

Connectors are
abstractions

When to hide components inside a connector ?

Remote Procedure Call

Stream

Message Bus

The Web

Views and Viewpoints

Viewpoint View
A subset of related

architectural design decisions
The common concerns

shared by a view

Views are not always orthogonal and might
become inconsistent if design decision are not
compatible

Consistency

How many views?

• 4+1 by Kruchten: Logical, Physical, Process,
Development, and Scenarios

• 5 by Taylor et al.: Logical, Physical, Deployment,
Concurrency, Behavioral

• 3 by Bass et al.: Component & Connector, Module
View, Behavior

How many views?

• 4+1 by Kruchten: Logical, Physical, Process,
Development, and Scenarios

• 5 by Taylor et al.:
Concurrency, Behavioral

• 3 by Bass et al.:
View, Behavior

4+1

Philippe Kruchten

Logical View Development View

Physical ViewProcess View

Use Case
Scenarios

Use Case Scenarios

• Unify and link the elements of the other 4 views

• Scenarios help to ensure that the architectural model
is complete with respect to requirements

• The architecture can be broken down according to
the scenarios and illustrated using the other 4 views

Music Player Scenarios

• Browse for new songs

• Pay to hear the entire song

• Download the purchased song on the phone

• Play the song

Logical View
• Decompose the system structure into software

components and connectors

• Map functionality (use cases) onto the components

• Concern: Functionality

• Target Audience: Developers and Users

Process View
• Model the dynamic aspects of the architecture and

the behavior its parts
- active components
- concurrent threads

• Describe how processes/threads communicate
- RPC
- Message bus

• Concern: Functionality, Performance

• Target Audience: Developers

Use Cases: Browse, Pay and Play For Songs

Development View
• Static organization of the software code artifacts

- packages
- modules
- binaries

• Mapping between the elements in the logical view
and the code artifacts

• Concern: Reuse, Portability, Build

• Target Audience: Developers

Physical View
• Hardware environment where the software will be

deployed
- hosts
- networks
- storage

• Mapping between logical and physical entities

• Concern: Quality attributes

• Target Audience: Operations

